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1. Introduction

We consider the nonlinear complementarity problem (NCP):

x ≥ 0, f(x) ≥ 0, xT f(x) = 0,

where f is a mapping from Rn into itself. This problem is said to be a P∗ NCP if f is a P∗-mapping.
We recall that f is said to be a P∗-mapping if there exists a constant κ ≥ 0 such that

(1 + κ)
∑

i∈I+

(xi − yi)(fi(x)− fi(y)) +
∑

i∈I−

(xi − yi)(fi(x)− fi(y)) ≥ 0

for any distinct vectors x, y in Rn, where

I+ = {i : (xi − yi)(fi(x)− fi(y)) > 0}, I− = {i : (xi − yi)(fi(x)− fi(y)) < 0}.

It is evident that every monotone mapping is a P∗-mapping with κ = 0. We also recall that f is said
to be a P0-mapping (P-mapping) if maxxi 6=yi(xi − yi)(fi(x)− fi(y)) ≥ (>) 0 for any distinct vectors x
and y in Rn (see, for example, [9, 26]). It is easy to see that every P∗-mapping is a P0-mapping. The
concept of the P∗-mapping is a straightforward extension of the P∗-matrix (sufficient matrix) introduced
by Cottle et al. [8] and Kojima et al. [19]. In fact, when f = Mx + q where M is an n× n matrix and
q ∈ Rn, it is evident that f is a P∗-mapping if and only if M is a P∗-matrix. It is worth mentioning that
the P∗-mapping can be equivalently defined as follows: There exists a nonnegative constant κ′ such that

(1 + κ′) max
1≤i≤n

(xi − yi)(fi(x)− fi(y)) + min
1≤i≤n

(xi − yi)(fi(x)− fi(y)) ≥ 0,

for any distinct vectors x, y in Rn (see Zhao and Isac [37]). P∗ complementarity problems have been
extensively studied in the area of interior-point methods (see, for instance, [3, 16, 19, 23, 24, 27, 28].

Many path-following methods for complementarity problems, in particular the interior-point methods
(see, e.g. [19, 36]) and non-interior-point methods (see, e.g. [4, 5, 11, 14, 34]), are designed to follow the
central path, i.e., {(x(µ), v(µ)) : µ ∈ (0,∞)} where (x(µ), v(µ)) is the unique solution to the system:

x > 0, v = f(x) > 0, Xv = µe. (1)

Interior-point algorithms usually iterate in the positive orthant, while non-interior-point algorithms allow
negative iterates. It is known that for P∗ complementarity problems the central path exists if and only
if the problem has a strictly feasible point (see, for instance, Kojima et al. [19]). It is shown in [38]
that a P∗ problem has a strictly feasible point if and only if its solution set is nonempty and bounded.
Therefore, we conclude that when the solution set is unbounded the P∗ problem has no strictly feasible
point, and hence the central path does not exist. This is why most of these central path based methods
usually need the requirement of the existence of an interior point, or a nonempty and bounded solution
set. For P0 NCPs, the later requirement implies the existence of an interior point.

On the other hand, Tikhonov regularization methods (see, e.g. [9, 10, 11, 15, 26, 29, 30, 39, 40]) follow
the Tikhonov regularization path instead of the central path. Tikhonov regularization path, denoted by
{(x(µ), z(µ)) : µ ∈ (0,∞)}, is a continuous trajectory on which each point (x(µ), z(µ)) is a unique solution
to the system:

x > 0, z = f(x) + µx > 0, Xz = 0. (2)

It is shown in [39] that the entire Tikhonov regularization path {(x(µ), z(µ)) : µ ∈ (0,∞)} exists for any
P∗ NCP, and it is bounded as long as the P∗ NCP has a solution. Therefore, the existence of a strictly
feasible point is not necessary for the existence and boundedness of the Tikhonov regularization path.
As a result, the Tikhonov regularization path based algorithms may not need the existence of an interior
point. To our best knowledge, there is no path-following algorithm in the literature that employs the
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framework of interior-point methods to track the Tikhonov regularization path. It is worth mentioning
that some existing non-Tikhonov regularization type algorithms can solve NCPs without requiring the
existence of the interior point. For example, for P∗ LCPs, the infeasible interior-point methods (see,
for example, [3, 23, 24]) do not require the strict feasibility condition for the underlying problem. For
monotone complementarity problems, this condition is also not needed for the interior-point algorithms
using self-dual embedding models. Such a method was first proposed by Ye [35] for monotone LCPs, and
was later generalized to monotone NCPs by Andersen and Ye [2]. Unfortunately, Ye’s model cannot be
applied to nonlinear P∗ problems since there is no guarantee for the embedded problem being again a P∗
problem. We also mention that Kojima et al. [19] proposed a big-M method to obtain a strictly feasible
point for an artificial LCP. However, it remains to be seen whether their model can be applied to P∗ or
more general NCPs.

Motivated by the above observation, we define a new continuous path that uses both ideas of interior-
point and regularization methods. Let a ∈ Rn

++ and b ∈ Rn be given. We first define the following general
system:

x > 0, s = f(x) + µ′x + µb > 0, Xs = µa, (3)

where µ′ and µ are two positive parameters. In particular, if b = 0 and µ′ = µ, then (3) reduces to
x > 0, s = f(x) + µx > 0, Xs = µa which is indeed a combination of (1) and (2).

Clearly, system (3) is quite different from (1) and (2). When f is a P∗-mapping, for each given µ′ > 0,
it is easy to see that g(x) = f(x)+µ′x is a P-mapping in x. If b is restricted to be in Rn

++, it follows from
the results in [18] that for every (µ′, µ) > 0 system (3) has a unique solution. If b is chosen arbitrarily in
Rn, it is shown in [39] that system (3) remains well-defined for some cases.

Notice that system (3) has two parameters µ′ and µ. From the viewpoint of numerical implementation,
however, it is convenient to consider the case with only one parameter. Thus, in this paper, we consider
the case of µ = θ

1−θ and µ′ = θp in (3), where θ is a parameter in (0,1) and p is a constant in (0,∞).
Then, by setting y = (1− θ)s, system (3) reduces to the following one-parameter system:

x > 0, y = (1− θ)(f(x) + θpx) + θb > 0, Xy = θa,

which can be written as

H(x, y, θ) :=
(

Xy − θa
y − (1− θ)(f(x) + θpx)− θb

)
= 0, (x, y) > 0. (4)

This system can be viewed as either a modified central path system by adding the Tikhonov regularization
term “θpx” to the function f or a modified Tikhonov regularization path system by introducing the
centering term “θa”. For each θ ∈ (0, 1), we denote by (x(θ), y(θ)) the solution of system (4). The term
regularized central path is used to refer the path {(x(θ), y(θ)) : θ ∈ (0, 1)} throughout the paper.

System (4) makes it possible to design a new regularization algorithm for NCPs by employing the
idea of interior-point algorithms. The purpose of this paper is to construct such a numerical method and
to provide its global and local convergence analysis.

The organization of the paper is as follows. In Section 2, we describe the algorithm. In Section 3, we
prove the global convergence of the algorithm, and characterize the accumulation points of the iterative
sequence generated by our algorithm. In Section 4, we prove the local superlinear convergence of the
algorithm. Some numerical results are reported in Section 5, and conclusions are given in the last section.

Notation: Rn denotes the n-dimensional Euclidean space, Rn
+ the nonnegative orthant, and Rn

++ the
positive orthant. We denote by x ≥ 0 (x > 0) a vector x ∈ Rn

+ (x ∈ Rn
++). For any vector x, the capital

X denotes the diagonal matrix whose (i, i)th entry is given by the ith component of x, i.e., X = diag(x),
and xI , where I ⊆ {1, ..., n}, denotes the vector with components xi for i ∈ I being arranged in the same
order as in x. If M = (mij)n×n is an n × n matrix, then MII denotes a submatrix of M , with entries
mij , where i ∈ I and j ∈ I, being arranged in the same order as in M. For any index set, |I| denotes the
cardinality of I. The symbols ‖ · ‖ and ‖ · ‖∞ denote, respectively, the 2-norm and the infinity norm of a
vector or a matrix. Throughout the paper, e denotes the vector with all components equal to 1, and its
dimension depends on the context; E denotes the identity matrix, i.e., E = diag(e).
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2. A path-following algorithm

We first list here two known results about system (4) established in [39].

Theorem 2.1. [39] Let f be a continuous P∗-mapping from Rn into itself. Let (a, b) ∈ Rn
++ × Rn

and p ∈ (0,∞) be given.
(i) System (4) has a unique solution (x(θ), y(θ)) for each θ ∈ (0, 1), and (x(θ), y(θ)) is continuous on

(0,1). If f is continuously differentiable, (x(θ), y(θ)) is also continuously differentiable on (0,1).
(ii) Moreover, if p ≤ 1 and the solution set of NCP is nonempty, then for any δ ∈ (0, 1) the section

of the path {(x(θ), y(θ)) : θ ∈ (0, δ]} is bounded. Thus, any accumulation point of the path, as θ → 0, is
a solution to the NCP.

In particular, for monotone NCPs, we have the following result.

Theorem 2.2. [39] Let (a, b) ∈ Rn
++ × Rn and p ∈ (0, 1). Let f be a continuous monotone map-

ping from Rn into itself. Suppose that the solution set of NCP is nonempty. Then the entire trajectory
{(x(θ), y(θ)) : θ ∈ (0, 1)} generated by system (4) converges, as θ → 0, to (x̂, ŷ) where x̂ is the least
2-norm solution, i.e., ‖x̂‖ ≤ ‖x∗‖ where x∗ is an arbitrary solution of the NCP.

It is worth mentioning that the part (ii) in Theorem 2.1 does not cover the case of p > 1. In fact, for
p > 1 and b ≤ 0, it remains elusive whether this result holds or not. However, if the vector b is restricted
to be in Rn

++, then by using the proof idea in [20], we can show the following result: Let f be given as
in Theorem 2.1. For any given (a, b) > 0 and p > 1, if the NCP has a nonempty solution set, then the
result of part (ii) in Theorem 2.1 remains valid.

Throughout the paper, p is a fixed scalar in (0,∞), and f is assumed to be continuously differentiable.
∇f denotes the Jacobian matrix of f. Thus, for a given vector (a, b) ∈ Rn

++×Rn, the mapping H defined
by (4) is continuously differentiable. Denote by ∇(x,y)H(x, y, θ) the Jacobian matrix of H with respect
to (x, y), i.e.,

∇(x,y)H(x, y, θ) =
(

Y X
−(1− θ)(∇f(x) + θpE) E

)
.

The following fact is very useful.

Lemma 2.1. Let f be a continuously differentiable P0-mapping. Let (x̄, ȳ) ∈ R2n
+ and θ̄ ∈ (0, 1).

Then the matrix ∇(x,y)H(x̄, ȳ, θ̄) is nonsingular if and only if x̄ + ȳ > 0.

Proof. Notice that (x̄, ȳ) ∈ Rn
+. If for some i, x̄i + ȳi = 0, then all elements in the ith row of the

matrix ∇(x,y)H(x̄, ȳ, θ̄) are zeroes. Hence, if ∇(x,y)H(x̄, ȳ, θ̄) is nonsingular, we must have that x̄i + ȳi > 0
for i = 1, ..., n, i.e., x̄ + ȳ > 0. Conversely, if x̄ + ȳ > 0, we prove that ∇(x,y)H(x̄, ȳ, θ̄) is nonsingular. By
contrary, we assume that there exists an vector (u, v) 6= 0 such that ∇(x,y)H(x̄, ȳ, θ̄)(u, v) = 0, i.e.,

Ȳ u + X̄v = 0, (5)

v = (1− θ̄)(∇f(x̄) + θ̄pE)u. (6)

From the above, we see that u 6= 0 since otherwise v also equals to zero. Since ∇f(x̄) + θ̄pE is a
P-matrix, there exists an index i such that ui[(∇f(x̄) + θ̄pE)u]i > 0. Thus, from (6) we have viui =
(1 − θ̄)ui[(∇f(x̄) + θ̄pE)u]i > 0. Since ȳi ≥ 0, x̄i ≥ 0, ȳi + x̄i > 0 and viui > 0, it follows that
ȳiui + x̄ivi 6= 0, which contradicts (5). 2

Central to many aspects of path-following algorithms is the concept of the neighborhood associated
with a continuous or smooth path to be considered. Notice that the regularized central path is given by
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{(x, y) > 0 : H(x, y, θ) = 0, θ ∈ (0, 1)}. In this paper, we choose the neighborhood around the regularized
central path as follows:

N (β) := {(x, y) ≥ 0 : ‖H(x, y, θ)‖∞ ≤ βθ, θ ∈ (0, 1)}.
For each given θ ∈ (0, 1), we denote

Nβ(θ) = {(x, y) ≥ 0 : ‖H(x, y, θ)‖∞ ≤ βθ}.
Clearly, N (β) = ∪θ∈(0,1)Nβ(θ).

As we will see below, at most two linear systems with the same matrix ∇(x,y)H(xk, yk, θk) are needed
to be solved at each iteration of the algorithm proposed in this paper. In order to guarantee the nonsin-
gularity of the matrix ∇(x,y)H(xk, yk, θk), by Lemma 2.1, it is sufficient to maintain the positivity of xk

and yk when θk ∈ (0, 1). Thus, all iterates generated by our algorithm are confined to be in the positive
orthant. Before stating the algorithm, we first give some strategies about the choice of initial points and
parameters required by the algorithm. Such initial points and parameters can be easily constructed.

Strategy 2.1. Let a ∈ Rn
++, b ∈ Rn, θ0 ∈ (0, 1), and (x0, y0) > 0 be given. Choose β > 0 such that

β ≥ ‖H(x0, y0, θ0)‖∞/θ0.

Strategy 2.2. Let (x0, y0) > 0 and θ0 ∈ (0, 1) be given. Set a = X0y0/θ0 and

b =
[
y0 − (1− θ0)(f(x0) + (θ0)px0)

]
/θ0.

Let β be an arbitrary scalar in (0,∞).
Strategy 2.3. Let θ0 ∈ (0, 1) and x0 > 0 be given, and let y0 > 0 be chosen such that y0 >

(1− θ0)(f(x0) + (θ0)px0). Set a = X0y0/θ0, and

b =
[
y0 − (1− θ0)(f(x0) + (θ0)px0)

]
/θ0.

Let β be an arbitrary scalar in (0,∞).

Remark 2.1. All the above strategies guarantee that (x0, y0) > 0 and (x0, y0) ∈ Nβ(θ0) which are
the requirement in the initial step of our algorithm. We note that both Strategies 2.2 and 2.3 imply that
H(x0, y0, θ0) = 0. Thus, the initial condition (x0, y0) ∈ Nβ(θ0) is satisfied for any given β ∈ (0,∞). In
particular, β can be taken such that 0 < β < min1≤i≤n ai. Also, since b > 0 in Strategy 2.3, β can be
taken such that 0 < β < min1≤i≤n min{ai, bi}. Such choices will be used in the analysis for the global
convergence of the algorithm (see Section 3 for details).

We now state the algorithm as follows.

Algorithm 2.1. Let p ∈ (0,∞) be a fixed positive scalar. Let ε > 0 be the termination tolerance.
Assign scalars α1, α2, σ and η in (0,1).

Step 1 (Initial Step). Let (x0, y0) ∈ R2n
++, a ∈ Rn

++, b ∈ Rn, θ0 ∈ (0, 1), and β > 0 such that
(x0, y0) ∈ Nβ(θ0).

Step 2. If ‖H(xk, yk, 0)‖ ≤ ε, stop; otherwise, let (∆x̂k,∆ŷk) solve the equation

H(xk, yk, 0) +∇(x,y)H(xk, yk, θk)(∆x,∆y) = 0. (7)

Let
tk = sup{t > 0 : xk + λ∆x̂k ≥ 0, yk + λ∆ŷk ≥ 0 for all λ ∈ (0, t]}.

Step 3. Set

λ̂k = min{1, (1− θk)tk}, (x̂k+1, ŷk+1) = (xk, yk) + λ̂k(∆x̂k,∆ŷk),
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and θ̂k+1 = ‖H(x̂k+1, ŷk+1, 0)‖∞. If (x̂k+1, ŷk+1) ∈ Nβ(θ̂k+1) and θ̂k+1 ≤ ηθk, then set

(xk+1, yk+1) = (x̂k+1, ŷk+1), θk+1 = θ̂k+1, k := k + 1

and go to Step 2; otherwise, go to Step 4.
Step 4. If H(xk, yk, θk) = 0, set (xk+1, yk+1) = (xk, yk) and go to Step 6; otherwise, let (∆xk,∆yk)

be the solution to equation

H(xk, yk, θk) +∇(x,y)H(xk, yk, θk)(∆x,∆y) = 0. (8)

Let
t′k = sup{t > 0 : xk + λ∆xk ≥ 0, yk + λ∆yk ≥ 0 for all λ ∈ (0, t]}.

Step 5. Set t′′k = {1, (1− θk)t′k}. Let λk be the maximum among values of t′′k , α1t
′′
k , α2

1t
′′
k , ... such that

‖H(xk + λk∆xk, yk + λk∆yk, θk)‖∞ ≤ (1− σλk)‖H(xk, yk, θk)‖∞. (9)

Set (xk+1, yk+1) = (xk, yk) + λk(∆xk,∆yk).
Step 6. Let γk be the maximum among the values of α2, α

2
2, α

3
2, ... such that (xk+1, yk+1) ∈ Nβ((1−

γk)θk). Set θk+1 = (1− γk)θk and k := k + 1. Go to Step 2.

A feature of Algorithm 2.1 is that it uses a modified predictor-corrector strategy. A combination of
Step 2 and Step 3 in this algorithm can be viewed as the ‘predictor step’, actually an approximate Newton
step. The two steps are used to accelerate the iteration when iterates are close to the solution set such
that a local rapid convergence can be achieved. At each iteration, the criterion ‘(x̂k+1, ŷk+1) ∈ Nβ(θ̂k+1)
and θ̂k+1 ≤ ηθk’ is checked to decide whether the iterate (x̂k+1, ŷk+1) generated by the ‘predictor step’ can
be accepted or not. If it is accepted, the ‘predictor step’ is repeated; otherwise, the algorithm proceeds
to the ‘corrector step’ that consists of Step 4 through Step 6, which can guarantee a desirable global
convergence of iterates. Modified predictor-corrector strategies are also used by several authors such as
Wright and Ralph [33], and Chen and Chen [6]. It should be pointed out that the factor ‘1− θk’ is used
in the formulas of λ̂k and t′′k in order to guarantee the positiveness of the iterate (xk, yk). Other factors
can be used provided that they are less than 1 and tend to zero as k →∞. However, such factors are not
needed for maintaining the positiveness of iterates in the cases such as 0 < β < min1≤i≤n ai.

We have the following result on which Step 5 and Step 6 of Algorithm 2.1 are based.

Proposition 2.1. Let σ ∈ (0, 1) be given as in Algorithm 2.1. Suppose that (x, y) > 0, θ ∈ (0, 1),
and (x, y) ∈ Nβ(θ). Let (∆x,∆y) be the solution to the system:

H(x, y, θ) +∇(x,y)H(x, y, θ)(∆x,∆y) = 0.

(i) If H(x, y, θ) = 0, then there exists a scalar γ∗ ∈ (0, 1) such that (x, y) ∈ Nβ((1 − γ)θ) for all
γ ∈ (0, γ∗].

(ii) If H(x, y, θ) 6= 0, then there exists a λ∗ ∈ (0, 1) such that

‖H(x + λ∆x, y + λ∆y, θ)‖∞ ≤ (1− σλ)‖H(x, y, θ)‖∞ for all λ ∈ (0, λ∗]. (10)

Let B := {(x′, y′) > 0 : x′ = x + λ′∆x, y′ = y + λ′∆y, λ′ ∈ (0, λ∗]}. For any (x′, y′) ∈ B, there exists a
γ∗ ∈ (0, 1) such that (x′, y′) ∈ Nβ((1− γ)θ) for all γ ∈ (0, γ∗].

Proof. If H(x, y, θ) = 0, by continuity it is evident that ‖H(x, y, (1 − γ)θ‖∞ ≤ β(1 − γ)θ for all
small γ > 0. Thus result (i) follows. We now prove the case that H(x, y, θ) 6= 0. By Lemma 2.1, the
matrix ∇(x,y)H(x, y, θ) is nonsingular, and thus (∆x,∆y) is well-defined. By differentiability of H, for
all sufficiently small λ we have

‖H(x + λ∆x, y + λ∆y, θ)‖∞ = ‖H(x, y, θ) + λ∇(x,y)H(x, y, θ)(∆x,∆y)‖∞ + o(λ)
= (1− λ)‖H(x, y, θ)‖∞ + o(λ)
= (1− σλ)‖H(x, y, θ)‖∞ + (σ − 1)λ‖H(x, y, θ)‖∞ + o(λ).
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Since σ < 1, there exists a small λ∗ ∈ (0, 1) such that for all λ ∈ (0, λ∗] the inequality (10) holds. We
now define ϕ : (0, 1] → R by

ϕ(γ) =
[1− θ − (1− (1− γ)θ)(1− γ)p]θp

θ
.

For any fixed (x′, y′) ∈ B, we have

‖H(x′, y′, (1− γ)θ)‖∞ ≤ ‖H(x′, y′, (1− γ)θ)−H(x′, y′, θ)‖∞ + ‖H(x′, y′, θ)‖∞
≤

∥∥∥
(

x′y′ − (1− γ)θa
y′ − (1− (1− γ)θ)(f(x′) + (1− γ)pθpx′)− (1− γ)θb

)

−
(

x′y′ − θa
y′ − (1− θ)(f(x′) + θpx′)− θb

) ∥∥∥
∞

+ ‖H(x′, y′, θ)‖∞

=
∥∥∥∥
(

θγa
−θγf(x′) + θϕ(γ)x′ + θγb

)∥∥∥∥
∞

+ ‖H(x′, y′, θ)‖∞
≤ θ[γ(‖a‖∞ + ‖b‖∞ + ‖f(x′)‖∞) + ‖ϕ(γ)x′‖∞] + ‖H(x′, y′, θ)‖∞.

By (10) and (x, y) ∈ Nβ(θ), we have

‖H(x′, y′, θ)‖∞ ≤ (1− σλ′)‖H(x, y, θ)‖∞ ≤ (1− σλ′)βθ.

Combining the above two inequalities yields

‖H(x′, y′, (1− γ)θ)‖∞
≤ β(1− γ)θ

[
γ(‖a‖∞ + ‖b‖∞ + ‖f(x′)‖∞) + ‖ϕ(γ)x′‖∞

β(1− γ)
+

1− σλ′

1− γ

]
. (11)

Since 1−σλ′ < 1 and ϕ(γ) → 0 as γ → 0, the term in the bracket of (11) is less than 1 provided that γ is
sufficiently small. Therefore, for all sufficiently small γ > 0 we have ‖H(x′, y′, (1− γ)θk)‖∞ ≤ β(1− γ)θ,
that is, (x′, y′) ∈ Nβ((1− γ)θ). 2

We now prove that the algorithm is well-defined. It is sufficient to prove the proposition below.

Proposition 2.2. For any k, if the current iterate (xk, yk, θk) satisfies that (xk, yk) > 0, θk ∈ (0, 1)
and (xk, yk) ∈ Nβ(θk), then the algorithm can arrive at (k + 1)th iteration, and the new iterate has the
same feature, that is, (xk+1, yk+1) > 0, θk+1 ∈ (0, 1), and (xk+1, yk+1) ∈ Nβ(θk+1).

Proof. We prove the result by induction. From the initial step, we have (x0, y0) > 0, θ0 ∈ (0, 1),
and (x0, y0) ∈ Nβ(θ0). We now assume that (xk, yk) > 0, θk ∈ (0, 1), and (xk, yk) ∈ Nβ(θk). We prove
that the algorithm can proceed to (k +1)th iteration and the next iterate satisfies the desired properties.
Indeed, by Lemma 2.1, systems (7) and (8) are well defined. Since (xk, yk) > 0, the scalar tk in Step 2 is
positive. We consider two cases:

Case 1: The criterion ‘(x̂k+1, ŷk+1) ∈ Nβ(θ̂k+1) and θ̂k+1 ≤ ηθk’ holds. In this case, (xk+1, yk+1) is
generated by Step 3. By the definition of tk and construction of the algorithm, we see that (xk+1, yk+1) >
0, (xk+1, yk+1) ∈ Nβ(θk+1), and θk+1 ≤ ηθk < θk. The fact θk+1 > 0 follows from the positivity of
(xk+1, yk+1). In fact, if θk+1 = 0, then from (xk+1, yk+1) ∈ Nβ(0) it follows that Xk+1yk+1 = 0 which
contradicts the positivity of (xk+1, yk+1). Thus the new iterate (xk+1, yk+1) satisfies all desired properties.

Case 2: The above-mentioned criterion does not hold. In this case, since (xk, yk) > 0, it is evident that
t′k > 0, and hence by Proposition 2.1 and construction of Step 5 the new iterate (xk+1, yk+1) maintains
positivity. Step 6 indicates that (xk+1, yk+1) ∈ Nβ(θk+1) where θk+1 = (1 − γk)θk < θk. By the same
proof as in Case 1, we have θk+1 > 0. 2

We note that θk is monotonically decreasing. In fact, by the construction of the algorithm, we have
either θk+1 ≤ ηθk or θk+1 = (1−γk)θk. From the above discussion, we have actually proved the following
result.
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Lemma 2.2. If {(xk, yk, θk)} is generated by Algorithm 2.1, then θk is monotonically decreasing, the
sequence {(xk, yk)} is confined to be in R2n

++, and

‖H(xk, yk, θk)‖∞ ≤ βθk for every k. (12)

3. Global convergence and properties of accumulation points.

In this section, we address the following questions: Under what condition the sequence {(xk, yk)} gener-
ated by Algorithm 2.1 is globally convergent? and what can be said about accumulation points of this
sequence? For convenience, we introduce two auxiliary sequences uk and vk:

(uk, vk) = H(xk, yk, θk)/θk.

By (12), the sequence (uk, vk) is bounded, i.e., ‖(uk, vk)‖∞ ≤ β. By the definition of H(·), the above
equation can be written as

Xkyk = θk(a + uk), (13)

yk = (1− θk)(f(xk) + (θk)pxk) + θk(b + vk). (14)

Clearly, a + uk > 0 since θk > 0 and (xk, yk) > 0. Before showing the global convergence, we first give
some useful results.

Lemma 3.1. Let f : Rn → Rn be a continuously differentiable P∗-mapping. Assume that the solution
set of the NCP is nonempty. Let the sequence {(xk, yk, θk)} be generated by Algorithm 2.1. Then for any
solution x∗ of the NCP, the following holds:

0 ≤ (x∗)T yk + f(x∗)T xk

≤ θk(1 + κ)eT (a + uk)− (1− θk)(θk)pκ|I+| min
1≤j≤n

πk
j

−(1− θk)(θk)p(xk)T (xk − x∗)− θk(xk − x∗)T (b + vk − f(x∗)), (15)

where
I+ = {i : (xk

i − x∗i )(fi(xk)− fi(x∗)) ≥ 0}, (16)

πk
j = (xk

j − x∗j )

(
xk

j +
(θk)1−p(bj + vk

j − fj(x∗))
1− θk

)
, i = 1, ..., n. (17)

Proof. Notice that (xk, yk) > 0 and x∗ is a solution to the NCP. For each i, we have

(xk
i − x∗i )(y

k
i − fi(x∗)) = xk

i yk
i − xk

i fi(x∗)− x∗i y
k
i + x∗i fi(x∗) ≤ xk

i yk
i .

Therefore, by (14), for each i we have

(xk
i − x∗i )(fi(xk)− fi(x∗))

= (xk
i − x∗i )

(
yk

i

1− θk
− θk(bi + vk

i )
1− θk

− (θk)pxk
i − fi(x∗)

)

=
(xk

i − x∗i )(y
k
i − fi(x∗))

1− θk
− (xk

i − x∗i )
(

(θk)pxk
i +

θk(bi + vk
i − fi(x∗))

1− θk

)

≤ xk
i yk

i

1− θk
− (θk)p min

1≤j≤n
πk

j , (18)
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where πk
j is given by (17). By the P∗ property of f , we have

(xk − x∗)T (f(xk)− f(x∗)) ≥ −κ
∑

i∈I+

(xk
i − x∗i )(fi(xk)− fi(x∗)), (19)

where I+ is defined by (16). Notice that
∑

i∈I+
xk

i yk
i ≤ (xk)T yk = θkeT (a + uk). By using (13), (14),

(18), and (19), we have

0 ≤ (x∗)T yk + f(x∗)T xk

= −(xk − x∗)T (yk − f(x∗)) + (xk)T yk

= −(xk − x∗)T ((1− θk)(f(xk) + (θk)pxk) + θkb + θkvk − f(x∗))
+θkeT (a + uk)

= −(1− θk)(xk − x∗)T (f(xk)− f(x∗))
−(xk − x∗)T [(1− θk)(θk)pxk + θk(b + vk − f(x∗))] + θkeT (a + uk)

≤ (1− θk)κ
∑

i∈I+

(xk
i − x∗i )(fi(xk)− fi(x∗))

−(xk − x∗)T [(1− θk)(θk)pxk + θk(b + vk − f(x∗))] + θkeT (a + uk)

≤ (1− θk)κ
∑

i∈I+

(
xk

i yk
i

1− θk
− (θk)p min

1≤j≤n
πk

j

)

−(xk − x∗)T [(1− θk)(θk)pxk + θk(b + vk − f(x∗))] + θkeT (a + uk)

≤ (1− θk)κ
(

θkeT (a + uk)/(1− θk)− |I+|(θk)p min
1≤j≤n

πk
j

)

−(xk − x∗)T [(1− θk)(θk)pxk + θk(b + vk − f(x∗))] + θkeT (a + uk)
= θk(1 + κ)eT (a + uk)− (1− θk)(θk)pκ|I+| min

1≤j≤n
πk

j

−(1− θk)(θk)p(xk)T (xk − x∗)− θk(xk − x∗)T (b + vk − f(x∗)).

The proof is complete. 2

The next result will be utilized to prove the boundedness of the iterative sequence. For a given scalar
µ > 0, let Fµ : R2n → R2n be the mapping defined by

Fµ(x, y) =
(

Xy
y − (f(x) + µx)

)
. (20)

For any vector x ≤ y, we denote by [x, y] the rectangle [x1, y1]× [x2, y2]× ...× [xn, yn].

Lemma 3.2 (Lemma 4.1 and Proposition 4.2 in [39]). If f is a continuous P0-mapping, then f
satisfies the following properties:

(i) Let zk be an arbitrary sequence satisfying ‖zk‖ → ∞ and zk ≥ z̄ for all k, where z̄ ∈ Rn is a
vector. Then there exist a subsequence of {zk}, denoted by {zkj}, and a fixed index i0 such that z

kj

i0
→∞

and fi0(z
kj ) is bounded from below.

(ii) If the solution set of the NCP is nonempty and bounded, then there exists a scalar µ̄ ∈ (0, 1) such
that ⋃

µ∈(0,µ̄]

F−1
µ (Dµ̄)

is bounded, where Dµ̄ := [0, µ̄e]× [−µ̄e, µ̄e], and

F−1
µ (Dµ̄) = {(x, y) ∈ R2n

+ : Fµ(x, y) ∈ Dµ̄},

9



where Fµ is defined by (20).

We are ready to show the boundedness of the sequence {(xk, yk)}.

Theorem 3.1. Let f be a continuously differentiable P∗-mapping. Assume that the solution set of
the NCP is nonempty. Then for any given p ∈ (0, 1] the sequence {(xk, yk)} is bounded. Moreover, if the
solution set is nonempty and bounded, then for any given p ∈ (0,∞) the sequence {(xk, yk)} is bounded.

Proof. Let x∗ be an arbitrary solution of the NCP. By Lemma 3.1, the inequality (15) holds. Dividing
both sides of (15) by (θk)p, we have

(1− θk)(xk)T (xk − x∗) + (θk)1−p(xk − x∗)T (b + vk − f(x∗))
+(1− θk)κ|I+| min

1≤j≤n
πk

j ≤ (θk)1−p(1 + κ)eT (a + uk). (21)

Since θk is monotonically decreasing, i.e., θk ≤ ... ≤ θ0 < 1, we see that 1 − θk ≥ 1 − θ0 > 0. Since
(uk, vk) is bounded, the right-hand side of (21) is bounded when p ≤ 1. It follows that the sequence
{xk} is bounded since otherwise the left-hand side of (21) is unbounded from above. Hence, by (14) and
continuity of f , the sequence {yk} is also bounded. The first part of the result is proved.

We now prove that if the solution set is bounded then for any given p ∈ (0,∞) the sequence {xk}
is bounded, and hence {yk} is also bounded. We show this fact by contradiction. Assume that {xk} is
unbounded. Notice that xk > 0 for all k. By Lemma 3.2, there exist an index j and a subsequence of
{xk}, denoted still by {xk}, such that xk

j → ∞ and fj(xk) is bounded from below. Since xk
j → ∞ and

the right-hand side of (13) is bounded, it follows that yk
j → 0. By (14), we have

fj(xk)− yk
j

1− θk
+

θk

1− θk
(bj + vk

j ) = −(θk)pxk
j . (22)

Notice that 0 < 1−θ0 ≤ 1−θk < 1, yk
j → 0, and vk is bounded. The left-hand side of (22) is bounded from

below. This together with the fact xk
j → ∞ implies that θk tends to zero. Denote by ȳk = yk/(1 − θk).

From (13) and (14), we have

F(θk)p(xk, ȳk) =
(

Xkȳk

ȳk − (f(xk) + (θk)pxk)

)
=

(
θk(a + uk)/(1− θk)
θk(b + vk)/(1− θk)

)
.

Since θk → 0, there exists a k0 such that for all k ≥ k0 we have (θk)p ≤ µ̄ and

F(θk)p(xk, ȳk) ∈ Dµ̄ = [0, µ̄e]× [−µ̄e, µ̄e],

where µ̄ is the scalar defined in Lemma 3.2. Thus

{(xk, ȳk)}k≥k0 ⊆
⋃

k≥k0

F−1
(θk)p(Dµ̄) ⊆

⋃

µ∈(0,µ̄]

F−1
µ (Dµ̄).

By Lemma 3.2, the right hand-side of the above is bounded. This contradicts the unboundedness of the
left hand-side. 2

Before proving the next result, we first introduce the following condition.

Condition 3.1. There exists a constant C > 0 such that

‖[∇(x,y)H(xk, yk, θk)]−1‖ ≤ C (23)

for all sufficiently large k.
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Similar conditions were used in several work such as [4, 5, 6, 34]. Condition 3.1 can be stated in other
versions. For instance, by using Burke and Xu-type assumption (see [5]), we can state the condition
as follows: Given β > 0 and θ0 ∈ (0, 1), there exists a C > 0 such that ‖[∇(x,y)H(x̂, ŷ, θ̂)]−1‖ ≤ C

for all 0 < θ̂ ≤ θ0 and (x̂, ŷ) ∈ Nβ(θ̂). It is evident that this Burke and Xu-type assumption implies
Condition 3.1. We now consider the following assumption used in [31, 33]: There exists a solution x∗ that
satisfies x∗ + f(x∗) > 0 (i.e., x∗ is a strictly complementary solution), ∇f(x∗)II is nonsingular, where
I = {i : x∗i > 0}, and ∇f(x) is Lipschitz continuous in the neighborhood of x∗. We now point out that
this condition implies Condition 3.1. In fact, under this assumption, it is easy to verify (see, for example,
Tseng [31] ) that the matrix

∇(x,y)H(x∗, y∗, 0) =
[

Y ∗ X∗

−∇f(x∗) E

]
(24)

is nonsingular for a P0 NCP, where y∗ = f(x∗). Therefore, Condition 3.1 holds in the local area of (x∗, y∗).
(We also mention that the above assumption in [31, 33] actually implies that the solution is unique. In
fact, the nonsingularity of (24) implies that (x∗, y∗) is a locally isolated solution (Proposition 2.5 in [25]),
and this further implies that (x∗, y∗) is the unique solution for a P0 NCP (see [17])).

The following result shows that the parameter θk can be reduced to zero. It should be pointed out
that if the constant β is taken relatively small as in the case (i) of the next theorem, then Condition 3.1 is
not required. Furthermore, in this case, the global convergence of the Algorithm 2.1 also does not require
Condition 3.1 (see Theorem 3.3 in details). We only impose Condition 3.1 for the global convergence
analysis with β ≥ min1≤i≤n ai and for the local convergence analysis in Section 4.

Theorem 3.2. Let f be a continuously differentiable P∗-mapping. Assume that the solution set of
the NCP is nonempty.

(i) Let β be taken such that 0 < β < min1≤i≤n ai. Then

lim
k→∞

θk = 0 and lim
k→∞

‖H(xk, yk, θk)‖∞ = 0. (25)

(ii) Let β be taken such that β ≥ min1≤i≤n ai. If Condition 3.1 is satisfied for {(xk, yk, θk)}, then
(25) remains valid.

Proof. Since θk is monotonically decreasing, there exists a θ̃ ≥ 0 such that θk → θ̃. Note that
‖H(xk, yk, θk)‖∞ ≤ βθk for all k (see Lemma 2.2). It suffices to show that θ̃ = 0. If Step 3 is accepted
infinitely many times, then it is evident that θ̃ = 0. We now consider the case that Step 3 is accepted only
finite many times. That is, there exists a k̄ such that for all k > k̄ the sequence {(xk, yk, θk)} is generated
by Step 4 through Step 6 of the algorithm. We show that θ̃ = 0 remains valid. Assume contrarily that
θ̃ > 0. We now derive a contradiction. Notice that θk+1 = (1− γk)θk for any k > k̄ and that θk → θ̃ > 0,
we conclude that γk → 0. Thus, from Step 6, it follows that (xk+1, yk+1) /∈ Nβ((1 − 1

α2
γk)θk) for all

sufficiently large k, that is,
∥∥H(xk+1, yk+1, (1− γk/α2)θk)

∥∥
∞ > β(1− γk/α2)θk. (26)

If p ≤ 1, by Theorem 3.1 the sequence {(xk, yk)} is bounded. We now consider the case of p > 1. Let x∗

be an arbitrary solution of the NCP. By Lemma 3.1, we have

(1− θk)(θk)p(xk)T (xk − x∗) + θk(xk − x∗)T (b + vk − f(x∗))
+(1− θk)(θk)pκ|I+| min

1≤j≤n
πk

j ≤ θk(1 + κ)eT (a + uk).

Since θ̃ > 0, it follows that 1 ≥ (1 − θk)(θk)p ≥ (1 − θ0)(θ̃)p > 0. Notice that the right-hand side of the
above inequality is bounded. We conclude that the sequence {xk} is bounded since otherwise the left-
hand side is unbounded from above. This implies that {yk} is also bounded by (14) and the continuity
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of f . Hence, the sequence {(xk, yk)} is bounded under the assumption of θ̃ > 0. Taking a subsequence if
necessary, we may assume that (xk, yk) converges to (x̃, ỹ). Clearly, (x̃, ỹ) ≥ 0. Since γk → 0, taking the
limit in (26) leads to ‖H(x̃, ỹ, θ̃)‖∞ ≥ βθ̃ > 0. On the other hand, if follows from ‖H(xk, yk, θk)‖∞ ≤ βθk

that ‖H(x̃, ỹ, θ̃)‖∞ ≤ βθ̃. Therefore,
‖H(x̃, ỹ, θ̃)‖∞ = βθ̃.

Case (i): 0 < β < min1≤i≤n ai. The above equation implies that ‖X̃ỹ − θ̃a‖∞ ≤ βθ̃. Since β <

min1≤i≤n ai, this further implies that x̃iỹi 6= 0 for every i. Thus, we have (x̃, ỹ) > 0. Since θ̃ ∈ (0, 1), by
Lemma 2.1, the matrix ∇(x,y)H(x̃, ỹ, θ̃) is nonsingular.

Case (ii): There exists a constant C > 0 such that ‖[∇(x,y)H(xk, yk, θk)]−1‖ ≤ C for all sufficiently
large k. This implies that the matrix ∇(x,y)H(x̃, ỹ, θ̃) is nonsingular. Moreover, by Lemma 2.1, we have
x̃ + ỹ > 0.

Both of the above two cases imply the nonsingularity of the matrix∇(x,y)H(x̃, ỹ, θ̃). Thus the following
system has a unique solution, denoted by (∆x̃,∆ỹ) :

H(x̃, ỹ, θ̃) +∇(x,y)H(x̃, ỹ, θ̃)(∆x,∆y) = 0. (27)

Then, (∆x̃,∆ỹ) is a strictly descent direction of ‖H(x, y, θ)‖∞ at (x̃, ỹ, θ̃). As a result, under one of the
cases (i) and (ii), the line search stepsizes λ̃ in Step 5 and γ̃ in Step 6 are both bounded from below by a
positive constant. In fact, in the first case, we have (x̃, ỹ) > 0, and hence the value of t̃′, defined in Step
4, is positive. Thus, (λ̃, γ̃) > 0 according to Proposition 2.1. For the second case, we note that x̃+ ỹ > 0.
This implies that for every component i, at least one of x̃i and ỹi must be positive. We now assume
without loss of generality that x̃i = 0. It follows from (27) that

ỹi∆x̃i = x̃i∆ỹi + ỹi∆x̃i = θ̃ai − x̃iỹi = θ̃ai > 0,

which implies that ∆x̃i > 0. Thus the value of t̃′, defined in Step 4, is positive. By Proposition 2.1, we
conclude that λ̃ > 0 and γ̃ > 0. Since H and ∇(x,y)H are continuous in the neighborhood of (x̃, ỹ, θ̃), it
is easy to see that there exists a constant α̃ such that γk ≥ α̃γ̃ for any iterate. This contradicts that
γk → 0. The proof is complete. 2

Note that if we use Strategy 2.2 or Strategy 2.3 to construct the initial values of the algorithm, β can
be fixed at any value in (0,∞). In particular, β can be fixed such that 0 < β < min1≤i≤n ai.

Combining Theorems 3.1 and 3.2, we can easily obtain the main global convergence result of this
paper. We first catalog some concepts about the solution of an NCP. Let S∗ denote the solution set of
an NCP. Recall that an element x∗ ∈ S∗ is said to be the least element solution if x∗ ≤ x′ for all x′ ∈ S∗

(see, for instance, [7]). An element x∗ ∈ S∗ is said to be the least 2-norm solution if ‖x∗‖ ≤ ‖x′‖ for
all x′ ∈ S∗. Clearly, the least element solution, if exists, coincides with the least 2-norm solution. The
following concept is a generalization of the least 2-norm solution.

Definition 3.1. An element x∗ is said to be a scaled least 2-norm solution in S∗ if there exists a
nonnegative scalar δ′ ≥ 0 such that for every element x′ ∈ S∗ there exists a corresponding diagonal matrix
M with one of its diagonal entries being 1 + δ′ and all other diagonal entries being 1’s such that

(x∗)T M(x∗ − x′) ≤ 0.

In another word, x∗ is said to be a scaled least 2-norm solution if there exists a nonnegative scalar δ′ ≥ 0
such that for every element x′ ∈ S∗ there exists a corresponding index i such that

δ′x∗i (x
∗
i − x′i) + (x∗)T (x∗ − x′) ≤ 0.

When δ′ = 0, the scaled least 2-norm solution is the least 2-norm solution (see the proof of Theorem
3.5). We also note that if the least element solution exists, the scaled least 2-norm solution coincides
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with this least element solution. We now state the main global convergence result of this paper. This
result also characterizes the accumulation points of the iterative sequence.

Theorem 3.3. Let f be a continuously differentiable P∗-mapping. Assume that the solution set of
the NCP is nonempty.

(i) Let p ∈ (0, 1] and 0 < β < min1≤i≤n ai. Then the sequence {(xk, yk)} generated by Algorithm 2.1
has at least one accumulation point, and every accumulation point of the sequence is a solution to the
NCP. Furthermore, if p < 1 every accumulation point of {(xk, yk)} is a scaled least 2-norm solution. In
particular, if the least element solution exists, then for p < 1 the entire sequence {(xk, yk)} converges to
the least element solution.

(ii) Let p ∈ (0,∞) and 0 < β < min1≤i≤n ai. If the solution set of the NCP is bounded, then the
sequence {(xk, yk)} generated by Algorithm 2.1 has at least one accumulation point, and each accumulation
point of this sequence is a solution to the NCP.

Proof. The boundedness of the sequence {(xk, yk)} follows from Theorem 3.1. Thus {(xk, yk)} has
at least one accumulation point. Let (x̂, ŷ) be an arbitrary accumulation point. By Theorem 3.2 and
continuity ofH, we have 0 = limk→∞ ‖H(xk, yk, θk)‖ = ‖H(x̂, ŷ, 0)‖, which implies that (x̂, ŷ) is a solution
to the NCP. Thus, every accumulation point is a solution of the NCP. Furthermore, let p < 1 and x∗ be
an arbitrary solution to the NCP. Taking the limit in (21) and noting that θk → 0 and p < 1, we see that
there exists an index i0 (corresponding to x̂ and x∗) such that

(x̂)T (x̂− x∗) + κnx̂i0(x̂i0 − x∗i0) ≤ 0. (28)

By Definition 3.1, x̂ is a scaled least 2-norm solution. In particular, if the least element solution exists,
by setting x∗ to be the least element solution, we see from (28) that x̂ must equal to the least element
solution. Since the least element solution is unique, the entire sequence {xk} is convergent, and so is
{yk} by (14) and continuity of f. 2

A feature of the result (i) above (and Theorem 3.6 below) is that no assumption is required for the
global convergence other than the existence of a solution to the problem. This result, however, requires
that β be taken relatively small. As a result, the neighborhood is possibly narrow.

From the viewpoint of numerical implementation, β should be taken relatively large such that the
neighborhood is wide enough to permit a large stepsize at each iteration in order to achieve a fast
convergence. Thus, the next result, an immediate consequence by combining Theorems 3.1 and 3.2 and
by using the proof of Theorem 3.3, is concerned with the case of wide neighborhoods. However, such
a result requires Condition 3.1, which essentially requires that the solution be strictly complementary.
In fact, if (x∗, y∗, θ∗) is an accumulation point of the sequence (xk, yk, θk) generated by Algorithm 2.1,
Condition 3.1 implies that the matrix∇(x,y)H(x∗, y∗, θ∗) is nonsingular, and hence by Lemma 2.1, (x∗, y∗)
must be strictly complementary.

Theorem 3.4. Let f be a continuously differentiable P∗-mapping. Assume that the solution set of
the NCP is nonempty.

(i) Let p ∈ (0, 1] and β ≥ min1≤i≤n ai. If Condition 3.1 is satisfied, then all the results in part (i) of
Theorem 3.3 hold.

(ii) Let p ∈ (0,∞) and β ≥ min1≤i≤n ai. If the solution set of the NCP is bounded and Condition 3.1
is satisfied, then the same results as in part (ii) of Theorem 3.3 hold.

The existence of the least element solution is not always assured. However, the least 2-norm solu-
tion always exists provided that the solution set is nonempty. The next result shows when the sequence
{(xk, yk)} converges to the least 2-norm solution.
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Theorem 3.5. Let f be a continuously differentiable monotone mapping. Assume that the solution
set of the NCP is nonempty.

(i) Let p ∈ (0, 1) and 0 < β < min1≤i≤n ai. Then the sequence {(xk, yk)} converges to (x̂, ŷ) where
ŷ = f(x̂) and x̂ is the least 2-norm solution.

(ii) Let p ∈ (0, 1) and β ≥ min1≤i≤n ai. If Condition 3.1 is satisfied, then the result of (i) above
remains valid.

Proof. Let (x̂, ŷ) be an accumulation point of {(xk, yk)}. Since each monotone mapping is a P∗-
mapping with κ = 0, by Theorems 3.3 and 3.4, x̂ is a solution to the NCP. Setting κ = 0 in (28), we
have

(x̂)T (x̂− x∗) ≤ 0 for all x∗ ∈ S∗. (29)

We now show that x̂ must be unique. Assume that there exists another solution x′ such that

(x′)T (x′ − x∗) ≤ 0 for all x∗ ∈ S∗. (30)

Setting x∗ = x′ in (29) and x∗ = x̂ in (30), respectively, and adding two inequalities, we have that
(x̂−x′)T (x̂−x′) ≤ 0 which indicates that x̂ = x′. Therefore the accumulation point of iterates is unique,
and hence {(xk, yk)} is convergent. It follows from (29) that ‖x̂‖2 ≤ (x̂)T x∗ ≤ ‖x̂‖‖x∗‖ for all x∗ ∈ S∗.
Therefore, x̂ is the least 2-norm solution. 2

The results established so far do not cover the case where the solution set is unbounded and p is
taken from (1,∞). For completeness, the remainder of this section is devoted to the study of this case.

By a closer inspection of the previous proofs, we conclude that b can take any vector in Rn provided
that the initial conditions (x0, y0) > 0 and (x0, y0) ∈ Nβ(θ0) are satisfied. In what follows, we restrict the
vector b to be in Rn

++, to show the global convergence for the above-mentioned case. We first recall the
concept of the maximally complementary solution that has been widely used in the literature. Denote

I = {i : x∗i > 0, for some x∗ ∈ S∗}, (31)

J = {j : fj(x∗) > 0, for some x∗ ∈ S∗}, (32)

O = {k : x∗k = fk(x∗) = 0, for all x∗ ∈ S∗}. (33)

A solution x∗ is said to be the maximally complementary solution of an NCP if x∗i > 0 for all i ∈
I, fj(x∗) > 0 for all j ∈ J, and x∗k = fk(x∗) = 0 for all k ∈ O. When O = ∅, i.e., x∗ + f(x∗) > 0, x∗ is
called a strictly complementary solution. We now prove the following result.

Theorem 3.6. Let f be a continuously differentiable P∗-mapping. Suppose that the solution set of
the NCP is nonempty. Let p, b, β be chosen such that p > 1, b ∈ Rn

++, and 0 < β < min1≤i≤n min{ai, bi},
then the sequence {(xk, yk)} generated by Algorithm 2.1 is bounded, and every accumulation point of the
sequence is a maximally complementary solution of the NCP.

Proof. We first show the boundedness of {(xk, yk)}. By the choice of b and β, it follows that b+ vk ≥
b− βe > 0, and thus,

πk
j ≥ −xk

j x∗j + (θk)1−p(xk
j − x∗j )(bj + vk

j − fj(x∗))/(1− θk)

≥ −xk
j x∗j − (θk)1−p(xk

j fj(x∗) + x∗j (bj + vk
j ))/(1− θk)

≥ −(xk)T x∗ − (θk)1−p((xk)T f(x∗) + (b + vk)T x∗)/(1− θk).

This together with (15) implies that

(x∗)T yk + f(x∗)T xk ≤ θk(1 + κ)eT (a + uk)− (1− θk)(θk)pκ|I+|[−(xk)T x∗

−(θk)1−p((xk)T f(x∗) + (b + vk)T x∗)/(1− θk)]
+(1− θk)(θk)p(xk)T x∗ − θk(xk − x∗)T (b + vk) + θk(xk)T f(x∗).
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Thus,

(x∗)T yk + f(x∗)T xk ≤ θk(1 + κ)eT (a + uk)
+(1− θk)(θk)p(1 + κ|I+|)(xk)T x∗ + θk(1 + κ|I+|)(xk)T f(x∗)
−θk(xk)T (b + vk) + θk(1 + κ|I+|)(b + vk)T x∗.

That is,

(x∗)T yk + [1− θk(1 + κ|I+|)]f(x∗)T xk

≤ θk(1 + κ)eT (a + uk)− θk(xk)T [b + vk

−(1− θk)(θk)p−1(1 + κ|I+|)x∗] + θk(1 + κ|I+|)(b + vk)T x∗. (34)

Since θk → 0 (by Theorem 3.2) and (xk, yk) > 0, the left-hand side of the above inequality is nonnegative
for all sufficiently large k. Thus, for all sufficiently large k we have

(xk)T [b + vk − (1− θk)(θk)p−1(1 + κ|I+|)x∗] ≤ (1 + κ)eT (a + uk) + (1 + κ|I+|)(b + vk)T x∗.

Since p > 1, θk → 0, and b + βe ≥ b + vk ≥ b− βe > 0, for all large k we have that

(b + vk)− (1− θk)(θk)p−1(1 + κ|I+|)x∗ ≥ (b− βe)/2 > 0.

Thus, for all sufficiently large k, we have

(xk)T (b− βe)/2 ≤ (1 + κ)eT (a + βe) + (1 + κ|I+|)(b + βe)T x∗

which implies that the sequence {xk} is bounded, and so is {yk} by (14) and continuity of f. Since θk → 0
and ‖H(xk, yk, θk)‖∞ → 0, every accumulation point of {(xk, yk)} is a solution to the NCP.

We now prove that each accumulation point of {xk} is a maximally complementary solution. Since
(1− θk)(θk)p ≤ θk and b + vk > 0, the inequality (34) can be further written as

(x∗)T yk + (1− θk(1 + κ|I+|))f(x∗)T xk

≤ θk

[
(1 + κ)eT (a + uk) + (1 + κ|I+|)(x∗)T xk + (1 + κ|I+|)(b + vk)T x∗

]
.

Let I, J be defined by (31) and (32). Then x∗i = 0 for all i /∈ I and fj(x∗) = 0 for all j /∈ J. The above
inequality can be written as

(x∗)T
I yk

I + (1− θk(1 + κ|I+|))fJ(x∗)T xk
J

≤ θk

[
(1 + κ)eT (a + uk) + (1 + κ|I+|)(x∗I)T xk

I + (1 + κ|I+|)(b + vk)T
I x∗I

]

i.e.,

(x∗)T
I (Xk

I )−1Xk
I yk

I + (1− θk(1 + κ|I+|))fJ(x∗)T (Y k
J )−1Y k

J xk
J

≤ θk

[
(1 + κ)eT (a + uk) + (1 + κ|I+|)(x∗I)T xk

I + (1 + κ|I+|)(b + vk)T
I x∗I

]
.

By (13), the above inequality can be written as

(x∗)T
I (Xk

I )−1(aI + uk
I ) + (1− θk(1 + κ|I+|))fJ(x∗)T (Y k

J )−1(aJ + uk
J)

≤ (1 + κ)eT (a + uk) + (1 + κ|I+|)(x∗I)T xk
I + (1 + κ|I+|)(b + vk)T

I x∗I .

Thus, we have

(x∗i /xk
i )(ai + uk

i ) ≤ (1 + κ)eT (a + uk) + (1 + κ|I+|)(x∗I)T xk
I + (1 + κ|I+|)(b + vk)T

I x∗I (35)
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for all i ∈ I, and

(1− θk(1 + κ|I+|))(fj(x∗)/yk
j )(aj + uk

j )

≤ (1 + κ)eT (a + uk) + (1 + κ|I+|)(x∗I)T xk
I + (1 + κ|I+|)(b + vk)T

I x∗I (36)

for all j ∈ J. The inequalities (35) and (36) hold for any solution x∗ of the NCP. Since {(xk, yk)} is
bounded, it has at least one accumulation point. Assume that (x̂, ŷ), where ŷ = f(x̂), is an accumulation
point of this sequence. To show (x̂, ŷ) to be a maximally complementary solution, it is sufficient to show
that x̂I > 0 and ŷJ > 0. By the choice of uk, we have that a + βe ≥ a + uk ≥ a − βe > 0. Notice that
the right-hand sides of (35) and (36) are bounded. Since (35) holds for any solution x∗, and since for
each i ∈ I, there exists an x∗ ∈ S∗ such that x∗i > 0. It follows that x̂I > 0 for all i ∈ I. Otherwise, if
x̂i = 0 for some i ∈ I, by the definition of I, there must exist an x∗ such that x∗i > 0. Then x∗i /xk

i →∞,
and hence the left-hand side of the inequality (35) is unbounded, contradicting to the boundedness of the
right-hand side. Thus, x̂I > 0. Similarly, it follows from (36) that ŷj = fj(x̂) > 0 for all j ∈ J. 2

The requirement of b > 0 and 0 < β < min1≤i≤n min{ai, bi} can be satisfied if we use Strategy 2.3 to
obtain the initial points and parameters for our algorithm (see Remark 3.1).

Since ‖H(xk, yk, θk)‖∞/θk ≤ β, the sequence H(xk, yk, θk)/θk is possibly convergent. If so, we claim
that a convergence result stronger than Theorem 3.6 can be obtained for monotone linear complemen-
tarity problems.

Theorem 3.7. Let f = Mx + q where q ∈ Rn and M is a positive semi-definite matrix. Assume
that the solution set of the linear complementarity problem is nonempty. Let p, b, β be chosen such
that p > 1, b ∈ Rn

++ and 0 < β < min1≤i≤n min{ai, bi}. If limk→∞H(xk, yk, θk)/θk = (û, v̂), i.e.,
limk→∞(uk, vk) = (û, v̂), then the entire sequence {(xk, yk)} converges to (x̂, ŷ), where ŷ = f(x̂) and x̂ is
a maximally complementary solution.

Proof. By Theorem 3.6, the sequence (xk, yk) is bounded, and each accumulation point is the max-
imally complementary solution of the problem. It is sufficient to show that the accumulation point of
(xk, yk) is unique. Let I, J,O be defined by (31)-(33). It is well-known that the partition I, J,O is unique.
Consider the following affine set

S̃ = {(x, y) ∈ R2n : xJ∪O = 0, yI∪O = 0, Mx− y + q = 0},

which is the smallest affine set containing the solution set. By assumption, S̃ 6= ∅. Let (x̃, ỹ) be an
arbitrary point in S̃. Notice that x̃T ỹ = 0 and ỹ = f(x̃) = Mx̃ + q. We have

x̃T yk + ỹT xk = −(xk − x̃)T (yk − ỹ) + (xk)T yk

= −(xk − x̃)T [(1− θk)(f(xk) + (θk)pxk) + θk(b + vk)− f(x̃)] + (xk)T yk

= −(1− θk)(xk − x̃)T (f(xk)− f(x̃))
−(xk − x̃)T [(1− θk)(θk)pxk + θk(b + vk − f(x̃))] + (xk)T yk

≤ −(xk − x̃)T [(1− θk)(θk)pxk + θk(b + vk − f(x̃))] + θkeT (a + uk).

The last inequality follows from the monotonicity of f and (13). Since x̃J∪O = 0 and ỹI∪O = 0, by the
same proof of Theorem 3.5, we have

x̃T
I (Xk

I )−1(aI + uk
I ) + ỹT

J (Y k
J )−1(aJ + uk

J)
≤ −(xk − x̃)T [(1− θk)(θk)p−1xk + b + vk − f(x̃)] + eT (a + uk).

Let (x̂, ŷ) be an arbitrary accumulation point of the sequence {(xk, yk)}. As we have pointed out, (x̂, ŷ)
is the maximally complementary solution. Noting that θk → 0 and p > 1, from the above inequality we
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have

x̃T
I X̂−1

I (aI + ûI) + ỹT
J Ŷ −1

J (aJ + ûJ) ≤ −(x̂− x̃)T (b + v̂ − f(x̃)) + eT (a + û)
= −(x̂I − x̃I)T (bI + v̂I) + eT (a + û). (37)

The last equation follows from the fact that x̂T f(x̃) = x̃T f(x̃) = 0. The above inequality holds for all
(x̃, ỹ) ∈ S̃. Let (x̄, ȳ) be an arbitrary solution of the problem. Notice that

(x̄ + λ(x̂− x̄), ȳ + λ(ŷ − ȳ)) ∈ S̃ for any λ ∈ R.

Setting (x̃, ỹ) = (x̄ + λ(x̂− x̄), ȳ + λ(ŷ − ȳ)) in (37), we have

λ
[
(x̂I − x̄I)T X̂−1

I (aI + ûI) + (ŷJ − ȳJ)T Ŷ −1
J (aJ + ûJ)− (x̂I − x̄I)T (bI + v̂I)

]

≤ −x̄T
I X̂−1

I (aI + ûI)− ȳT
J Ŷ −1

J (aJ + ûJ)− (x̂I − x̄I)T (bI + v̂I) + eT (a + û).

Since the above inequality holds for any λ ∈ R, it follows that

(x̂I − x̄I)T X̂−1
I (aI + ûI) + (ŷJ − ȳJ)T Ŷ −1

J (aJ + ûJ) = (x̂I − x̄I)T (bI + v̂I).

That is, ∑

i∈I

(ai + ûi)(1− x̄i/x̂i) +
∑

j∈J

(aj + ûj)(1− ȳj/ŷj) = (x̂I − x̄I)T (bI + v̂I).

Since 1− t ≤ − log t for all t > 0, we see from the above that

−
∑

i∈I

(ai + ûi) log(x̄i/x̂i)−
∑

j∈J

(aj + ûj) log(ȳj/ŷj) ≥ (x̂I − x̄I)T (bI + v̂I).

i.e.,
∑

i∈I

(ai + ûi) log x̄i +
∑

j∈J

(aj + ûj) log ȳj − x̄T
I (bI + v̂I)

≤
∑

i∈I

(ai + ûi) log x̂i +
∑

j∈J

(aj + ûj) log ŷj − x̂T
I (bI + v̂I). (38)

Notice that above inequality holds for any solution (x̄, ȳ). Since the solution set S∗ is convex and the
function

φ(x, y) =
∑

i∈I

(ai + ûi) log xi +
∑

j∈J

(aj + ûj) log yi − xT
I (bI + v̂I)

is a strict concave function, the inequality (38) implies that the accumulation point (x̂, ŷ) of the sequence
{(xk, yk)} is the optimal solution of the strict concave program max{φ(x, y) : (x, y) ∈ S∗}. Since a strict
concave program has at most one solution, (x̂, ŷ) must be unique. The proof is complete. 2

4. Local superlinear convergence

The global convergence of Algorithm 2.1 has been proved in the previous section. Now, we further show
that the algorithm is also locally superlinearly convergent under some condition. We make use of the
following assumption.

Condition 4.1. (i) The NCP has a unique solution x∗, and (ii) ∇f(x) is Lipschitz continuous in
the neighborhood of x∗.
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The following result is an immediate consequence of Theorem 3.4.

Corollary 4.1. Let f be a continuously differentiable P∗-mapping. Let {(xk, yk)} be generated by
Algorithm 2.1. Assume that Condition 3.1 and Condition 4.1 are satisfied. Then the sequence {(xk, yk)}
converges to (x∗, y∗), the unique solution of the problem.

The following result shows that the stepsize λ̂k in Step 3 converges to 1.

Lemma 4.1. Under the same conditions in Corollary 4.1, if λ̂k is given as in Step 3 of Algorithm
2.1, then limk→∞ λ̂k = 1.

Proof. According to Theorem 3.2 and Corollary 4.1, the sequence {(xk, yk, θk)} converges to (x∗, y∗, 0).
Thus, by continuity, we have H(xk, yk, 0) → H(x∗, y∗, 0) = 0. By (7) and (23), we have

‖(∆x̂k,∆ŷk)‖ ≤ ‖[∇H(xk, yk, θk)]−1‖‖H(xk, yk, 0)‖ → 0.

Since {(xk, yk, θk)} → (x∗, y∗, 0), Condition 3.1 implies that ∇(x,y)H(x∗, y∗, 0) is nonsingular. From (24),
this indicates that x∗ + y∗ > 0. Thus, (x∗, y∗) is a strictly complementary solution. Let I = {i : x∗i > 0}
and J = {j : y∗j > 0}. Then by strict complementarity, we have I ∪ J = {1, ..., n}. Since x∗I > 0, y∗J > 0
and (∆x̂k,∆ŷk) → 0, there exists a k′ such that for all k ≥ k′ we have

xk
I + λ∆x̂k

I > 0, yk
J + λ∆ŷk

J > 0 for every λ ∈ (0, 1] (39)

On the other hand, by (7), we have

Y k∆x̂k + Xk∆ŷk = −Xkyk.

Multiplying both sides by (XkY k)−1, we have

(Xk)−1∆x̂k + (Y k)−1∆ŷk = −e.

Therefore,
(Xk

J )−1∆x̂k
J = −eJ − (Y k

J )−1∆ŷk
J , (Y k

I )−1∆ŷk
I = −eI − (Xk

I )−1∆x̂k
I .

Let λ ∈ (0, 1) be an arbitrary scalar. We thus have

xk
J + λ∆x̂k

J = Xk
J (Xk

J )−1(xk
J + λ∆x̂k

J) = Xk
J (eJ + λ(Xk

J )−1∆x̂k
J)

= Xk
J [(1− λ)eJ − λ(Y k

J )−1∆ŷk
J ]. (40)

Similarly,
yk

I + λ∆ŷk
I = Y k

I [(1− λ)eI − λ(Xk
I )−1∆x̂k

I ]. (41)

If (1 − θk)tk ≥ 1 where tk is given as in Step 2 of Algorithm 2.1, by the definition of λ̂k we have that
λ̂k = 1. We now consider the case of (1− θk)tk < 1. Since (∆x̂k,∆ŷk) → 0 and (xk

I , yk
J) → (x∗I , y

∗
J) > 0,

we have that (Xk
I )−1∆x̂k

I → 0 and (Y k
J )−1∆ŷk

J → 0. It follows that for any given α ∈ (0, 1), there exists
a k′′ such that for all k > k′′ we have

(1− λ)eI − λ(Xk
I )−1∆x̂k

I > 0, (1− λ)eJ − λ(Y k
J )−1∆ŷk

J > 0,

for all λ ∈ (0, α]. Therefore, for every k > k′′, it follows from (40) and (41) that

xk
J + λ∆x̂k

J > 0, yk
I + λ∆ŷk

I > 0 for all λ ∈ (0, α]. (42)

Combining (39) and (42), we have tk ≥ α. Therefore, λ̂k = min{1, (1− θk)tk} = (1− θk)tk ≥ (1− θk)α.

In the summary, for all sufficiently large k, we have either λ̂k = 1 or 1 > λ̂k ≥ (1 − θk)α. Since θk → 0
and α is an arbitrary scalar less than 1, we conclude that λ̂k → 1 as k →∞. 2
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We are now ready to prove the superlinear convergence when p ≥ 1. The superlinear convergence
when p < 1 is not known.

Theorem 4.1. Assume that f is a continuously differentiable P∗-mapping satisfying Condition 4.1.
Let p and β be chosen such that p ≥ 1 and β > 1 + w∗ where w∗ is a constant given by

w∗ = ‖a‖∞ + ‖b‖∞ + ‖f(x∗)‖∞ + ‖x∗‖∞. (43)

Let the sequence (xk, yk) be generated by Algorithm 2.1. If Condition 3.1 is satisfied, then the sequence
(xk, yk) is locally superlinearly convergent, i.e., limk→∞ ‖xk+1 − x∗‖/‖xk − x∗‖ = 0.

Proof. By Corollary 4.1, we have that {(xk, yk, θk)} → (x∗, y∗, 0). This together with p ≥ 1 implies
that there exists a constant c > 0 such that ‖∇f(xk)− (1− θk)(θk)p−1I‖ ≤ c for all k. Therefore

‖∇(x,y)H(xk, yk, θk)−∇(x,y)H(xk, yk, 0)‖

≤
∥∥∥∥
(

Y k Xk

−(1− θk)(∇f(xk) + (θk)pE) E

)
−

(
Y k Xk

−∇f(xk) E

)∥∥∥∥
≤ θk‖∇f(xk)− (1− θk)(θk)p−1E‖
≤ cθk.

By Lipschitz continuity of ∇f(x), for all sufficiently large k we have

‖∇(x,y)H(xk, yk, 0)−∇(x,y)H(x∗, y∗, 0)‖ ≤
∥∥∥∥
(

Y k Xk

−∇f(xk) E

)
−

(
Y ∗ X∗

−∇f(x∗) E

)∥∥∥∥
≤ ‖Y k − Y ∗‖+ ‖Xk −X∗‖+ ‖∇f(xk)−∇f(x∗)‖
≤ c′‖yk − y∗‖+ c′′‖xk − x∗‖,

where c′ and c′′ are two positive constants. Thus, for all sufficiently large k we have

‖∇(x,y)H(xk, yk, θk)−∇(x,y)H(x∗, y∗, 0)‖
≤ ‖∇(x,y)H(xk, yk, θk)−∇(x,y)H(xk, yk, 0)‖+ ‖∇(x,y)H(xk, yk, 0)−∇(x,y)H(x∗, y∗, 0)‖
≤ cθk + c′‖yk − y∗‖+ c′′‖xk − x∗‖. (44)

On the other hand, denote

τk =
‖H(xk, yk, 0)−H(x∗, y∗, 0) +∇(x,y)H(x∗, y∗, 0)((xk, yk)− (x∗, y∗))‖

‖(xk, yk)− (x∗, y∗)‖ . (45)

By continuous differentiability of H, it follows that limk→∞ τk = 0. Therefore, by (23), (44) and (45), for
all sufficiently large k we have that

‖(x̂k+1, ŷk+1)− (x∗, y∗)‖
= ‖(xk, yk) + λ̂k(∆x̂k,∆ŷk)− (x∗, y∗)‖
= ‖(xk, yk)− (x∗, y∗) + λ̂k[∇(x,y)H(xk, yk, θk)]−1H(xk, yk, 0)‖
= ‖[∇(x,y)H(xk, yk, θk)]−1{[∇(x,y)H(xk, yk, θk)−∇(x,y)H(x∗, y∗, 0)]((xk, yk)

−(x∗, y∗)) + λ̂k[H(xk, yk, 0)−H(x∗, y∗, 0) +∇(x,y)H(x∗, y∗, 0)((xk, yk)

−(x∗, y∗))] + (1− λ̂k)∇(x,y)H(x∗, y∗, 0)((xk, yk)− (x∗, y∗))}‖
≤ ‖[∇(x,y)H(xk, yk, θk)]−1‖{‖[∇(x,y)H(xk, yk, θk)−∇(x,y)H(x∗, y∗, 0)]((xk, yk)

−(x∗, y∗))‖+ λ̂k‖H(xk, yk, 0)−H(x∗, y∗, 0) +∇(x,y)H(x∗, y∗, 0)((xk, yk)
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−(x∗, y∗))‖+ (1− λ̂k)‖∇(x,y)H(x∗, y∗, 0)((xk, yk)− (x∗, y∗))‖}
≤ C(cθk + c′‖yk − y∗‖+ c′′‖xk − x∗‖)‖(xk, yk)− (x∗, y∗)‖+ λ̂kCτk‖(xk, yk)− (x∗, y∗)‖

+C(1− λ̂k)‖∇(x,y)H(x∗, y∗, 0)‖‖(xk, yk)− (x∗, y∗)‖
= φk‖(xk, yk)− (x∗, y∗)‖, (46)

where

φk = C(cθk + c′‖yk − y∗‖+ c′′‖xk − x∗‖) + λ̂kCτk + C(1− λ̂k)‖∇(x,y)H(x∗, y∗, 0)‖.

Since (xk, yk) → (x∗, y∗), θk → 0, τk → 0, and λ̂k → 1 (by Lemma 4.1), it follows that φk → 0 as k →∞.
Therefore, to show the local superlinear convergence of the algorithm, it is sufficient to prove that the
algorithm eventually takes only Step 2 and Step 3, that is, to show that there exists a k′ such that for all
k > k′ the iterate (xk, yk) is produced by Step 3. Since (xk, yk, θk) → (x∗, y∗, 0) and ∇(x,y)H(x∗, y∗, 0) is
nonsingular, we have

lim
k→∞

‖E −∇(x,y)H(xk, yk, 0)[∇(x,y)H(xk, yk, θk)]−1‖ = 0,

and
‖(∆x̂k,∆ŷk)‖ = ‖[∇(x,y)H(xk, yk, θk)]−1H(xk, yk, 0)‖ = O(‖H(xk, yk, 0)‖),

which also implies that (∆x̂k,∆ŷk) → 0, and hence (x̂k+1, ŷk+1) → (x∗, y∗). Notice that λ̂k → 1 (by
Lemma 4.1). Combining the above two relations yields

‖H(x̂k+1, ŷk+1, 0)‖
= ‖H(xk, yk, 0) + λ̂k∇(x,y)H(xk, yk, 0)(∆x̂k,∆ŷk)‖+ o(λ̂k‖(∆x̂k,∆ŷk)‖)
= ‖[I − λ̂k∇(x,y)H(xk, yk, 0)∇(x,y)H(xk, yk, θk)−1]H(xk, yk, 0)‖+ o(λ̂k‖(∆x̂k,∆ŷk)‖)
= o(‖H(xk, yk, 0)‖) + o(λ̂k‖(∆x̂k,∆ŷk)‖)
= o(‖H(xk, yk, 0)‖). (47)

Therefore, for any given τ < η/(β + w∗), where w∗ is given by (43) and η is the constant given as in
Algorithm 2.1, there exists a k0 such that for all k > k0 we have

‖H(x̂k+1, ŷk+1, 0)‖∞ ≤ τ‖H(xk, yk, 0)‖∞. (48)

Denote
wk = ‖a‖∞ + ‖b‖∞ + ‖f(xk)‖∞ + ‖xk‖∞,

ŵk+1 = ‖a‖∞ + ‖b‖∞ + ‖f(x̂k+1)‖∞ + ‖x̂k+1‖∞.

Clearly, wk → w∗ and ŵk+1 → w∗, there is an index k̄0 such that for all k > k̄0,

τ < η/(β + wk), 1 + ŵk+1 < β. (49)

If for all k > max{k0, k̄0} the iterate (xk, yk) is generated by Step 3, from (46) we have the desired
superlinear convergence result. Otherwise, there exists an l > max{k0, k̄0} such that the iterate (xl, yl)
is produced by Step 5. We prove that after this step all succeeding iterates, i.e., {(xk, yk)} where k > l,
are generated by Step 3. Indeed, since p ≥ 1 and θl ≤ 1, it is easy to see that

‖H(xl, yl, 0)−H(xl, yl, θl)‖∞ ≤ θlw
l,

‖H(x̂l+1, ŷl+1, θ̂l+1)−H(x̂l+1, ŷl+1, 0)‖∞ ≤ θ̂l+1ω̂
l+1.
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Notice that ‖H(xl, yl, θl)‖∞ ≤ βθl. It follows that

‖H(xl, yl, 0)‖∞ ≤ ‖H(xl, yl, 0)−H(xl, yl, θl)‖∞ + ‖H(xl, yl, θl)‖∞ ≤ (ωl + β)θl.

Since l > max{k0, k̄0}, by (48) and (49), we have

θ̂l+1 = ‖H(x̂l+1, ŷl+1, 0)‖∞ ≤ τ‖H(xl, yl, 0)‖∞ ≤ τ(ωl + β)θl < ηθl.

On the other hand, we have

‖H(x̂l+1, ŷl+1, θ̂l+1)‖∞ ≤ ‖H(x̂l+1, ŷl+1, θ̂l+1)−H(x̂l+1, ŷl+1, 0)‖∞ + ‖H(x̂l+1, ŷl+1, 0)‖∞
≤ θ̂l+1ω̂

l+1 + θ̂l+1

< βθ̂l+1. (50)

The last inequality follows from (49). Therefore, by the construction of the algorithm, the iterate
(xl+1, yl+1) is generated by Step 3. Thus,

(xl+1, yl+1) = (x̂l+1, ŷl+1), θl+1 = θ̂l+1 = ‖H(x̂l+1, ŷl+1, 0)‖∞.

We now show that the next iterate (xl+2, yl+2) is also generated by Step 3. Indeed, by (48) and noting
that τ < η, we have

θ̂l+2 = ‖H(x̂l+2, ŷl+2, 0)‖∞ ≤ τ‖H(xl+1, yl+1, 0)‖∞ = τθl+1 < ηθl+1.

By a proof similar to (50), we still have ‖H(x̂l+2, ŷl+2, θ̂l+2)‖∞ < βθ̂l+2. Thus, (xl+2, yl+2) is also gener-
ated by Step 3. Repeating the proof, we conclude that Algorithm 2.1 eventually takes only Steps 2 and
3. Since limk→∞ φk = 0, it follows from (46) that limk→∞ ‖xk+1 − x∗‖/‖xk − x∗‖ = 0. 2

5. Preliminary numerical experiments

Algorithm 2.1 was implemented and tested on some linear and nonlinear complementarity problems that
are not necessarily P∗ problems. We first introduce these test problems.

(P1) Walrasian equilibrium model (WEM) [22]. This is a 4-variable problem depending on three
parameters (α, b2, b3). We use two sets of constants, i.e., (α, b2, b3) = (0.75, 1, 0.5) and (0.75, 1, 2), and
denote by WEM0.5 and WEM2 the two cases, respectively.

(P2) Nash-cournot production problem (NCPP)[22]. We denote by NCPP5 and NCPP10 the 5 and
10-variable problems, respectively.

(P3) Invariant capital stock model (ICSM) [13]. This is an NCP formulated from an invariant capital
stock model described in [13]. We solve this example with (n,m, l) = (10, 2, 2), q = (0.8, 0.8)T , and
v(u) = (u1 + 2.5u2)0.2(2.5u3 + u4)0.2(2u5 + 3u6)0.2. The data for A,B and C can be found in [13]. We
run our algorithm for two different values of the discount factor, i.e., α = 0.7 and 0.9. We denote the two
cases by ICSM0.7 and ICSM0.9, respectively.

(P4) Waston’s fourth problems (WFP) [32]. This is an NCP representing the KKT conditions for a
convex programming problem.

(P5) Kojima-Shindo problems (KSP) [22].
(P6) The generalized von Thünen model (GTM) [22]. This is an NCP with 106 variables, which

pertains to an agriculture economy with 20 farming regions, 4 commodities and 3 consumers.
(P7) Fathi’s example [12]. This is an LCP with the vector q = −e, and the positive definite matrix

M1 given in (51).

M1 =




1 2 2 ... 2
2 5 6 ... 6
2 6 9 ... 10
...

...
...

. . .
...

2 6 9 ... 4(n− 1) + 1




, M2 =




1 2 2 ... 2
0 1 2 ... 2
0 0 1 ... 2
...

...
...

. . .
...

0 0 0 ... 1




. (51)
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(P8) Murty’s example [21]. This is an LCP with q = −e and the matrix M2 given in (51).
(P9) Ahn’s example [1]. The matrix M3 is given in (52) and the vector q = −e.
(P10) Waston’s third problem (WTP) [32]. This is a 10-variable LCP. The matrix is given in [32],

and q is the vector with −1 in the 8th coordinate and zeros elsewhere.
(P11) P∗ problem. The matrix M4 is a P∗-matrix given in (52), and q = (1,−2, 0, 0)T . This LCP has

no strictly feasible point and the solution set of the problem is unbounded. Clearly, this problem is not
a monotone LCP.

M3 =




4 −2 0 0 0 ... 0
1 4 −2 0 0 ... 0
0 1 4 −2 0 ... 0
...

. . . . . . . . . . . . . . .
...

0 ... ... ... 0 1 4




, M4 =




0 0 2 1
0 0 1 2
−2 −1 0 0
4 8 0 0


 . (52)

Table 1: Numerical results for p = 0.9

Problem DIM R0 IT5 IT3 NF
CPU
(sec.) Rk θk

WEM0.5 4 1.5 6 3 24 0.00 2.2e-16 8.7e-09
WEM2 4 2.25 5 5 29 0.00 2.2e-16 6.4e-12
NCPP5 5 428.162 7 4 26 0.00 7.1e-16 2.1e-14
NCPP10 10 253.713 8 5 30 0.00 9.8e-16 1.1e-14
ICSP0.7 14 10.2 31 1 95 0.00 8.9e-16 1.7e-17
ICSP0.9 14 10.2 12 3 44 0.00 2.2e-16 3.1e-12
WFP 5 88106.8 31 1 95 0.00 3.8e-16 2.2e-19
WTP 10 4 30 4 1750 0.01 3.4e-22 6.7e-20
KSP 4 13 9 3 31 0.00 8.9e-16 4.5e-09
GTM
(ε = 10−5) 106 52.475 64 0 1068 1.22 6.2e-06 5.8e-08

P∗ 4 11 4 3 24 0.00 0.0 0.0
Murty 100 197 7 3 25 0.13 6.6e-16 3.7e-11
Murty 200 397 8 3 28 1.60 4.4e-16 9.4e-12
Murty 400 797 9 4 32 21.94 0.00 1.1e-15
Ahn 100 3 5 3 19 0.12 2.2e-16 7.8e-12
Ahn 200 3 5 3 19 1.05 2.2e-16 7.8e-12
Ahn 400 3 5 3 19 13.04 2.2e-16 7.8e-12
Fathi 100 19997 11 3 37 0.22 0.0 1.3e-15
Fathi 200 79997 13 2 42 1.98 3.0e-22 3.8e-16
Fathi 400 319997 14 3 46 28.01 2.3e-16 4.2e-15

Algorithm 2.1 is coded in Fortran 90 and run on a DEL Alpha workstation. For a given tolerance
ε, the following aspects are recorded to examine the numerical effectiveness of the algorithm: Dimension
of the problem (DIM), the executing time (in second) of the algorithm (CPU), the total number of
iterates generated by Step 5 (IT5), the total number of iterates generated by Step 3 (IT3), and the
number of evaluations of functions (NF). R0 stands for the initial residual ‖H(x0, y0, 0)‖∞, and Rk =
‖H(xk, yk, 0)‖∞ denotes the final residual if the algorithm terminates at xk. The final θk is also recorded.
The total number of iterations is omitted here since it is the summation of IT5 and IT3.

In general, a wide neighborhood enables the algorithm to take a large stepsize at each iteration to
ensure a rapid convergence. It is evident that in Algorithm 2.1 the width of the neighborhood around the

22



regularized central path is determined by the value of β. Therefore, a large β should be taken in practical
applications. This is also inspired by the analysis in Section 4 (see Theorem 4.1). In our experiments,
we use Strategy 2.1 to obtain the initial points and parameters. This strategy permits the algorithm to
start from arbitrary vectors (x0, y0) > 0. The following initial points and parameters are used in our code
for all test problems: a = b = e, x0 = y0 = e, θ0 = 0.9, σ = 0.001, α1 = α2 = 0.9, η = 0.99, p = 0.9,
and β = ‖H(x0, y0, θ0)‖∞/θ0 + 100. The termination criterion is ‖H(x, y, 0)‖∞ < ε, where ε is a given
tolerance. In our code, ε = 1e − 15 is used for all test problems except for the generalized von Thünen
model. From our numerical experience, when p is relatively large, e.g., p ≥ 0.8, the algorithm converges
quickly and the performance of algorithm has no remarkable difference except for von Thünen model.
Numerical results for p = 0.9 are summarized in Table 1, and for p = 1.8 are summarized in Table 2.
We note that when p = 0.9 is taken, it is difficult for the algorithm to achieve an accuracy higher than
1e− 7 for the generalized von Thünen model. The result with ε = 1e− 5 is given in Table 1. However,
if p = 1.8 is taken, the algorithm can reach an approximate solution with ε = 1e− 14.

Table 2: Numerical results for p = 1.8

Problem DIM R0 IT5 IT3 NF
CPU
(sec.) Rk θk

WEM0.5 4 1.5 6 3 22 0.00 2.1e-16 1.1e-13
WEM2 4 2.25 4 4 17 0.00 2.1e-17 1.3e-13
NCPP5 5 428.162 6 3 22 0.00 6.9e-16 2.1e-09
NCPP10 10 253.713 9 4 32 0.00 9.6e-16 1.2e-15
ICSP0.7 14 10.2 34 1 104 0.00 5.6e-16 1.7e-17
ICSP0.9 14 10.2 12 3 43 0.00 2.1e-16 1.9e-14
WFP 5 88106.8 31 1 95 0.00 3.8e-16 2.2e-19
WTP 10 4 28 3 1702 0.01 4.5e-23 5.2e-21
KSP 4 13 11 4 93 0.00 1.4e-23 7.5e-13
GTM
(ε = 10−14) 106 52.475 57 0 254 1.04 7.1e-15 5.6e-17

P∗ 4 11 4 3 24 0.00 0.0 0.0
Murty 100 197 7 3 25 0.16 4.4e-16 3.9e-11
Murty 200 397 8 3 28 1.45 6.6e-16 9.6e-12
Murty 400 797 9 3 31 30.38 8.8e-16 1.9e-12
Ahn 100 3 5 3 19 0.12 2.2e-16 9.0e-12
Ahn 200 3 5 3 19 1.05 2.2e-16 9.1e-12
Ahn 400 3 5 3 19 14.08 2.2e-16 9.1e-12
Fathi 100 19997 12 2 39 0.22 2.1e-23 2.9e-16
Fathi 200 79997 14 2 51 2.12 2.3e-24 3.3e-17
Fathi 400 319997 14 3 46 43.56 2.2e-16 4.0e-15

It is interesting to see how the convergence speed of Algorithm 2.1 changes if the parameter p varies
in (0,∞). As an example, we consider the problem (P11) which is a P∗ problem. For different p, the
performance of the algorithm is demonstrated in Table 3. We see that the algorithm becomes very slow
when p is too small.

It is also of interest to see how the behavior of the algorithm changes as β varies. To ensure the initial
condition of the algorithm, the least value of β is given by β0 = ‖H(x0, y0, θ0)‖∞/θ0. Let p = 0.9 and
ε = 1e− 15. For different β, the numerical results on the P∗ problem are given in Table 4. We see that
the convergence speed is indeed improved as β increases, but the convergence speed does not improve
any more after β becomes sufficiently large.
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Table 3: Performance of the algorithm for different p

p 0.4 0.45 0.5 0.6 0.7 0.9 1.2 1.8 2
ITS 750 132 39 8 7 7 7 7 7
NF 2998 526 154 28 24 24 24 24 26

CPU 0.07 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Table 4: Performance of the algorithm for different β

β β0 β0+1 β0 +5 β0 +8 β0 +10 ≥ β0 + 20
ITS 126 79 33 24 9 8
NF 502 314 126 90 30 26

CPU 0.14 0.08 0.03 0.02 0.01 0.00

Finally, we make some comments on the reduction of θk. To assure a fast convergence, the iterate
should be eventually generated by Step 3 since the search direction generated in Step 2 is actually an
approximate Newton direction. Thus, a large value of η ∈ (0, 1) should be chosen in order to generate
the new iterates by Step 3. That is why η = 0.99 is taken in our code. But this does not imply a
slow decrease of θk. In the proof in Theorem 4.1, we have proved that the algorithm gradually phases
out the Steps 4, 5 and 6, and eventually repeats Steps 2 and 3. Thus, by the construction of Step 3,
θk = ‖H(xk, yk, 0)‖∞ for all sufficiently large k. Therefore, under conditions of Theorem 4.1, it follows
from (47) that limk→∞ θk+1/θk = 0, i.e., the sequence θk converges to zero superlinearly. Fast decrease
of θk indeed can be seen from our numerical results (see, Table 1 and Table 2).

6. Final remarks. In this paper, a new path-following algorithm for NCPs is presented, which
is based on a new concept of the regularized central path. This method is globally convergent for any
P∗ NCP with a nonempty solution set. The boundedness assumption on the solution set, or equivalently
the strict feasibility condition is not required in our algorithm. Under certain assumptions, a fast local
convergence of the algorithm can also be achieved. Tikhonov regularization plays a role in our method,
which enables the algorithm to tackle ill-posed or unstable complementarity problems. Moreover, since
this algorithm tracks approximately the so-called regularized central path which is proved to exist under
a mild condition for general P0 problems (see [39]), the algorithm proposed in this paper can be extended
to nonlinear P0 problems without any difficulty.

Acknowledgments: We are grateful to the three anonymous referees and the associate editor for
their constructive comments.
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